
Data Locality
The path to effective net-zero latency

Fred Patton
● Developer Evangelist at Nstream

● Long-time backend engineer,
generalist, and polyglot

● Serverless and fullstack by night

● Avid technologist

● Lover of the arts and various
spoken languages

Keep your processing jobs local
Data locality is the concept of
placing computation in the
proximity of the data it requires.
This can reduce network latency
and improve overall system
performance by avoiding large,
recurring data movements.

Ground Zero data locality
Nstream’s open-source SwimOS
platform doesn’t simply situate its
processing unit near its requisite
datastores. As a stateful object,
the processing unit is its own
datastore.

Giants steps in magnitude
Varying orders of magnitude in
data access speeds differentiate
system component types. Data
locality allows for keeping to a
low order of milliseconds, or even
microseconds or nanoseconds,
by avoiding slower access
methods.

Power laws of latency
Registers (0.5ns), CPUs (1ns), Branch mispredict (3-20 cycles),
M1/main memory (60-80ns), L3 cache (10-30ns)

MD5 (0.4-1.5μs), System call (1-10μs), Context switch (2-10μs),
Memory copy 664KB (1-3μs), Redis read (5-20μs), 1GB DDR4 memory
read (10-30μs)

HTTP request (100-500μs), Sequential read (50-150μs), SSD 8K page
read (50-150μs), SSD write (100-300μs)

HDD sequential read (5-20ms), HDD 8K page read (5-20ms),
Websockets conn (20-200ms), Websockets send/recv (1-2ms),
HTTP/2 conn (20-200ms), HTTP/2 send/recv (1-10ms), Intra-zone
network RT (1-10ms), Disk seek time / Intra-zone latency (2-10ms)

Coast-to-coast network RT (50-100ms)

Simple SQL/NoSQL query (a few to 10s of ms), Complex SQL/NoSQL
query (10s of ms - few secs), HTTP/1.1 send/recv (few - several secs)

Fitting under optimal latency profiles
≫ Optimal latency is the minimum

latency required to move data from
processing source to destination.

≫ To achieve the effect of net-zero
latency, added processing must not
increase latency by more than an
order of magnitude below the current
baseline.

How can this be achieved?
≫ It begins with mechanical sympathy

≫ Understanding varying data access costs

≫ Understanding the effect of operations on a
systems level

≫ Avoiding the cost of polling with streaming
APIs and uninterrupted streaming

≫ Minimizing the extent of transmission with
differential state sync

≫ Keep requisite state together in continuous
readiness through stateful processing

How has it been achieved
≫ Nstream intended to be a customer, but when the

tools failed, it had to create them

≫ Nstream didn’t recreate real-time data, but they
needed to build applications running on top of it

≫ Nstream’s SwimOS platform is the embodiment of first
principles for real-time applications:

≫ (1) Streaming APIs adding net-zero latency

≫ (2) Stateful Objects abstracting away requisite
mechanical sympathy

≫ (3) Real-time UIs realizing end-to-end
uninterrupted streaming

Get started!
● Visit us at: https://www.nstream.io/

● READMEs: https://github.com/swimos/swim

● Developer site: https://www.swimos.org/

● Sample Applications: https://github.com/swimos

● Cookbook: https://github.com/swimos/cookbook

● Tutorials: https://github.com/swimos/tutorial

https://www.nstream.io/
https://github.com/swimos/swim
https://www.swimos.org/
https://github.com/swimos
https://github.com/swimos/cookbook
https://github.com/swimos/tutorial

Thank You!

